Ensuring the availability of healthcare services during and after Covid-19

by auditing of existing processes and using data to locate process improvements potential

Māris Svilāns, CEO, Infotrust m.svilans@theinfotrust.com

Polling Question 1

What are the key opportunities you see with data analytics?

Improve governance, e.g. more healthcare operations transparency

Easier access to healthcare information and data

Improved Patient services

Better quality of work e.g. better personal decision making

Disruption in healthcare

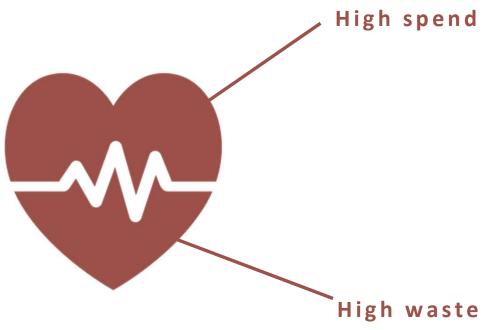
- Increased regulation & compliance
- Increased pressure to do more with less and improve population healthcare management

Social

- "Lifestyle illness" diabetes, heart disease, etc
- Shifting demographics aging populations
- Demand for consistent care
- Greater visibility of patient experience / satisfaction

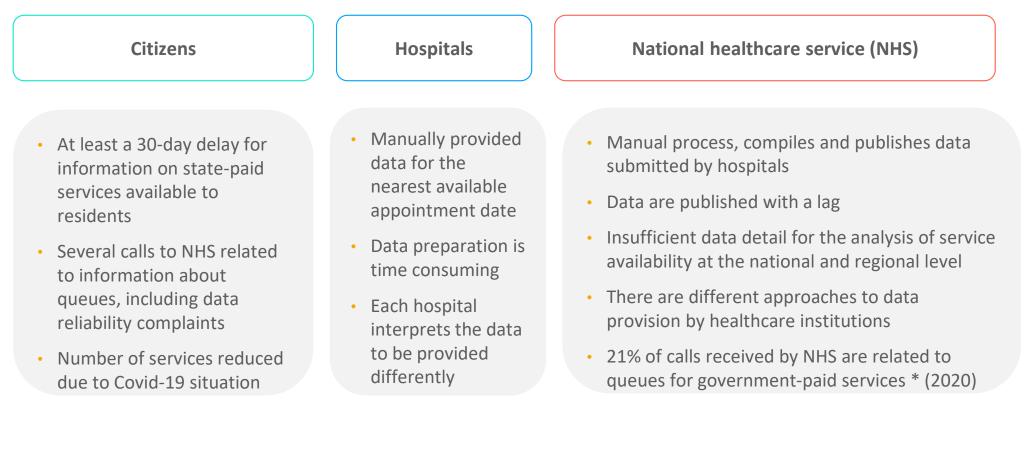
Economic

- Massive pressure to decrease costs
- Rising costs of Covid-19 pandemic
- Rising cost of drugs and treatment
- More competition, even in public health systems


0

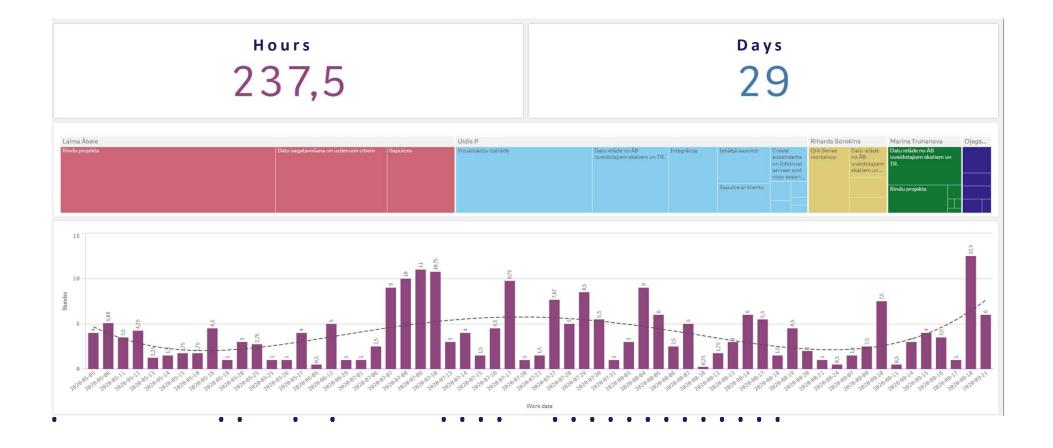
Technology

- Move to digitization of health records
- Increased concern of patient confidentiality / data security and GDPR (EU).


Common challenges in healthcare

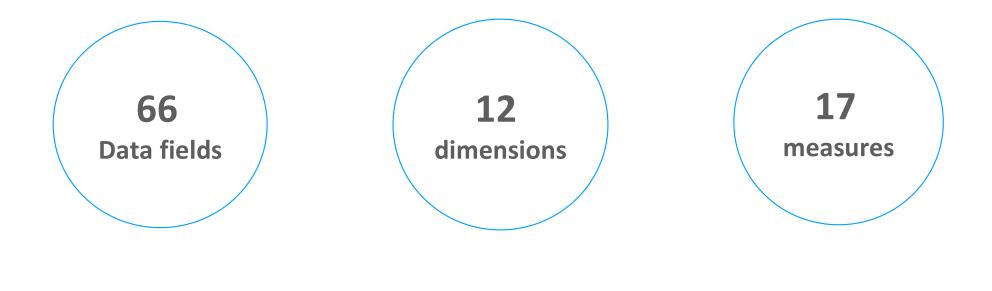
- Demand changes e.g. ageing pop
- Covid-19 pandemic
- Risk/priority safety/prevention
- Rising costs e.g. pharma
- Capacity/capability/productivity
- Staff wellbeing/retention
- Accountability/transparency/outcomes
- Collaboration
- Digitalisation/cyber security / GDPR

Our challenge - availability of healthcare services

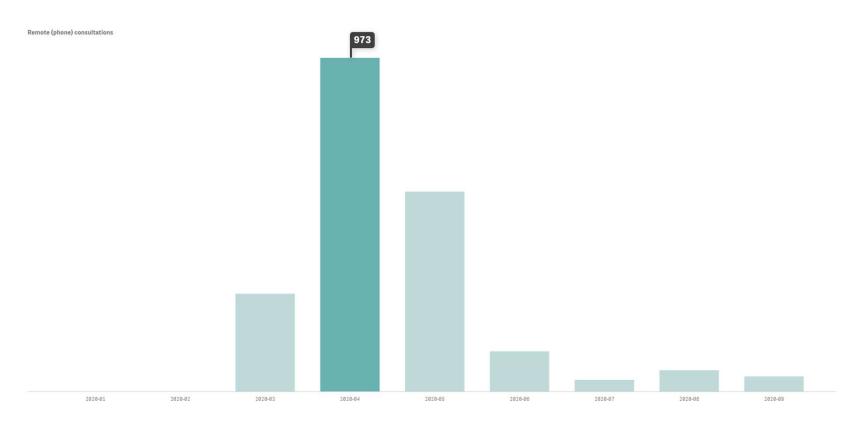

Biggest issue - long queues on the appointment with doctors

Goals of the project

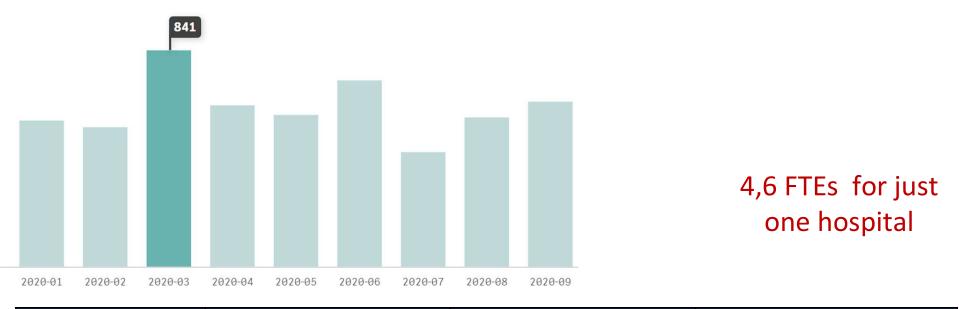
Hospitals	Detailed and up-to-date service availability data is loaded and are available to all stakeholders automatically, without manual preparation
	Benefits for target groups:
Citizens	Detailed, reliable data on the possibility to receive state-paid services
Hospitals	Easily monitor and analyze queue data for the needs of the hospital
NHS	 Analyze the demand and availability of services Forecast the funding needed to improve accessibility Obtain a visual overview of the operational indicators of accessibility needed to make operational decisions on improving accessibility at the national or regional level


Project scope was delivered in 29-man days

Project data scope


. .

•


Some initial observations

Rise in phone consultations - April 2020, first Covid wave

Hidden costs of hospital call center – deleted appointments

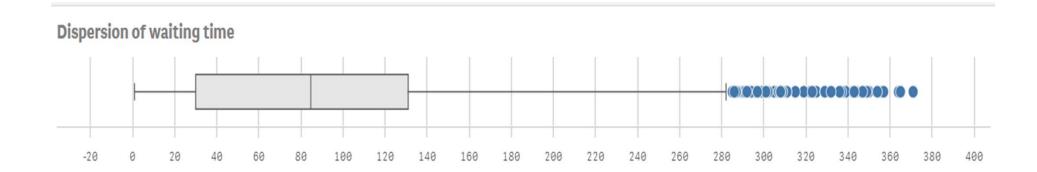
Just for one hospital and for one specialty

Number of calls	Length of call, min	Number of specialities	Total call time, hours
800	2	30	800

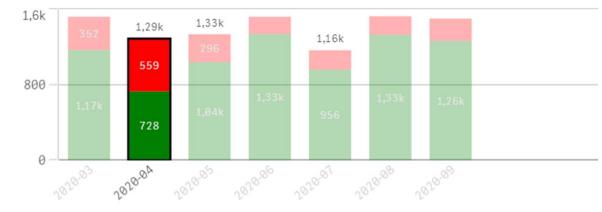
Waiting time for the appointment

Green corridor vs standard process

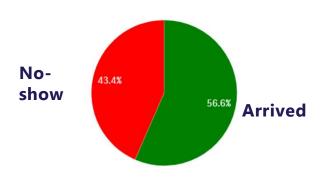
Green corridor (days)



First visit (days)

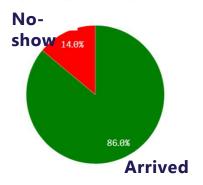

Dispersion of waiting time

Some very extreme values - sometimes data quality issues

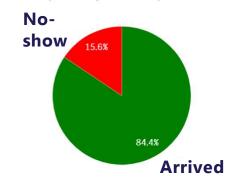

First Covid-19 Wave had most impact on no-shows

Due to canceling of some services

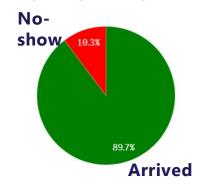
Distribution of patients by enrollment performance by periods


Distribution of patients by enrollment performance

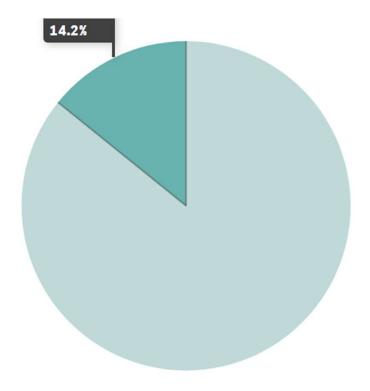
No-show by appointment type (excluding Covid-19 wave)


Doctor

Distribution of patients by enrollment performance


Call center

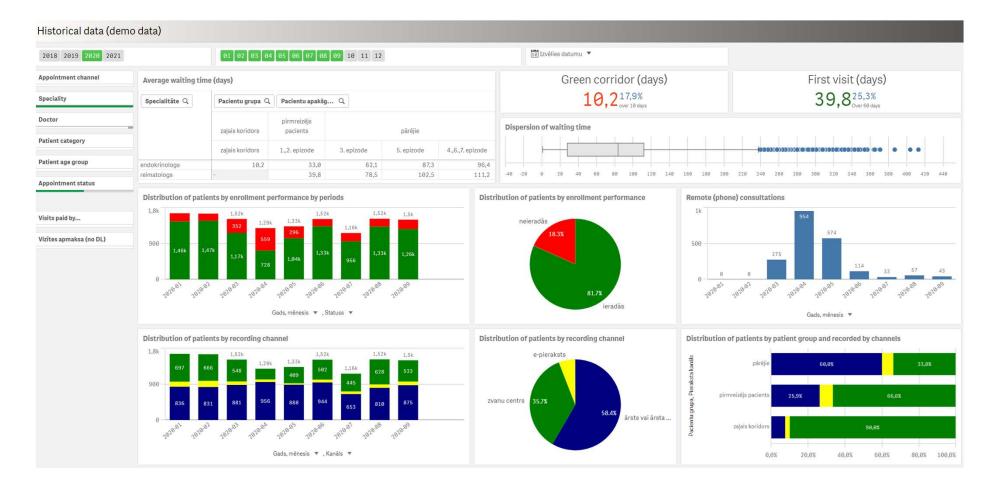
Distribution of patients by enrollment performance



E-appointment

Distribution of patients by enrollment performance

Idle time is at least 14% of wasted capacity



What-if we could gain 14% back?

Just one hospital and one specialty selected - results are outstanding!

	a of working h per month Increase of capacity (%)		14	Additional doctors			Change of waiting time (days) -12,76		s) Change	Change of number of patient per 125			
Doctor Q Year-month Q	Values												[*]
	Days	Working hours	What -if hours	Available number of appointments	What-if number of appointments	Avg doctor working days	Appointments per day	Patients	Visited	No show-up	Not came(%)	Avg waiting time (days)	What-if waiting time (days)
Total/Average	281	1158:24	1320:34	2681	3 056	41,9	41,9	2118	1850	268	12,7%	103,1	90,5
O 01015110662	25	127:00	144:46	507	578	20,3	7,9	337	324	13	3,9%	72,8	63,9
O 05078610806	30	106:00	120:50	212	242	7,1	3,3	132	96	36	27,3%	117,7	103,2
O 07078213703	23	148:00	168:43	339	386	14,7	5,3	317	288	29	9,1%	71,5	62,7
O 19017810916	21	112:00	127:40	224	255	10,7	3,5	227	213	14	6,2%	89,6	78,6
O 22127511965	45	165:24	188:33	330	376	7,3	5,2	274	229	45	16,4%	197,5	173,2
O 23075710632	24	80:30	91:46	192	219	8,0	3,0	187	169	18	9,6%	73,0	64,0
O 26028611715	23	35:30	40:28	71	81	3,1	1,1	47	0	47	100,0%	100,8	88,4
O 26064810607	11	35:00	39:54	36	41	3,3	0,6	35	26	9	25,7%	6,4	5,6
O 28035210628	42	157:00	178:58	386	440	9,2	6,0	301	266	35	11,6%	112,0	98,2
O 29128010419	37	192:00	218:52	384	438	10,4	6,0	261	239	22	8,4%	111,0	97,3

Demonstration of the data analytics model

Conclusions for improvement potential

.

- Improvement by 5% of appointment efficiency trough e-appointment would deliver for one hospital the following savings:
 - Reduction of monthly costs per hospital in call center by 2 FTE
 - Increase of available doctors' time equal of hiring 1,5 FTE per specialty
- The e-appointment and process digitalization should be continued as preferred appointment channel which leads lowest no-shows

•••••

How data can be used to mitigate these challenges?

transformation

• System change:

New organizational models and funding designed to incentivize and support improved care. For example: value-based reimbursement.

• Cultural change:

Changing roles and responsibilities, effective team-work, staff and patient empowerment, greater transparency, and collaboration.

• Process change:

Evidence-based redesign of core clinical, business, and other processes. It should incorporate innovation and an outcomes-based approach.

All require more accurate, granular data for fact-based decisions

Collaboration

Hospitals

Detailed and up-to-date service availability data is loaded and are available to all stakeholders automatically, without manual preparation

Cross-Agency Collaboration:

Sharing data across agency / department to see the whole story is extremely topical.

NHS

Being able to connect health data to police data to education data to welfare data to get an all-encompassing view of client interactions with each agency can lead to better identification and more proactive management of these same clients.

Open government data

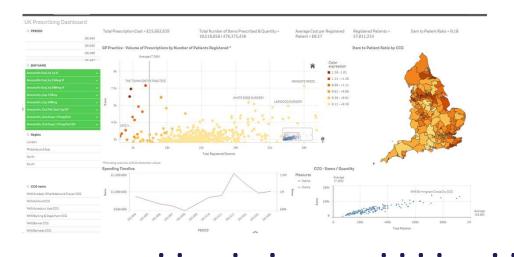
Making collective smarter decisions

Open Government Data (OGD) is a philosophy- and increasingly a set of policies - that promotes transparency, accountability and value creation by making government data available to all.

Why Open data? Transparency.

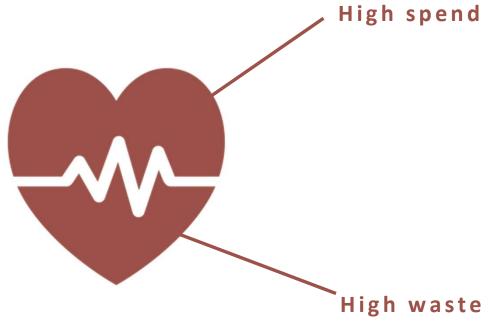
Releasing social and commercial value.
 Participatory Governance.

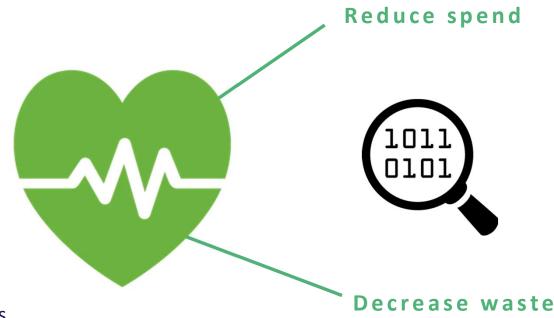
COVID has accelerated the adoption of Open data for many government agencies when dealing with the pandemic responses.


We have seen benefits for consumers through Open data initiatives like Open Banking, Open Energy

Some examples of open data in healthcare

UK prescribing


- National news coverage on antibiotic over prescribing
- Open-data available to all 13Gb / month
- £8Bn / \$12Bn annual spend


Data analytics can help to deal with these challenges

- Demand changes e.g. ageing pop
- Covid-19 pandemic
- Risk/priority safety/prevention
- Rising costs e.g. pharma
- Capacity/capability/productivity
- Staff wellbeing/retention
- Accountability/transparency/outcomes
- Collaboration
- Digitalisation/cyber security

Data analytics can help to deal with these challenges

- Demand changes e.g. ageing pop
- Covid-19 pandemic
- Risk/priority safety/prevention
- Rising costs e.g. pharma
- Capacity/capability/productivity
- Staff wellbeing/retention
- Accountability/transparency/outcomes
- Collaboration
- Digitalisation/cyber security

Contact :

Māris Svilāns

E-mail: m.svilans@theinfotrust.com or Linkedin